В виноградной лозе и в ягодах винограда преобладает d-винная кислота. l-Винная кислота присутствует в значительных количествах в листьях Beuchina retuculata (до 50 г на 1 кг). Из листьев можно получить довольно большие количества ее. Мезовинная кислота в растениях не встречается. Она образуется из всех изомеров винной кислоты при кипячении их со щелочью.
По данным Ж. Риберо-Гайона, в молодых листьях и стеблях виноградной лозы концентрация винной кислоты достигает 3,7% на сухую массу. В зрелом винограде количество винной кислоты колеблется от 0,2 до 1%. Виноград является единственным источником получения винной кислоты в промышленном масштабе.
По химическим свойствам все формы винной кислоты одинаковы, но отличаются рядом физических свойств (температурой плавления, растворимостью и др.). Так, например, d- и Z-винные кислоты имеют температуру плавления 170°С, виноградная 240— 246° С, а мезовинная 140° С. Растворимость d- и l-винной кислот в воде выше, чем виноградной.
Поскольку винная кислота является двухосновной, она дает два рода солей — кислые и средние. Кислая соль калия винной кислоты (КНС4Н4О6) труднорастворима в воде и даже в вине, вследствие чего в значительном количестве выпадает из вина в осадок. Средняя соль калия винной кислоты (К2С4Н406), а также средняя соль натрия хорошо растворимы в воде. При действии едкой щелочи на кислую калийную соль винной кислоты образуется сегнетова соль (KNaC4H4064H20).
Растворимость солей винной кислоты (винный камень) в вине зависит от содержания некоторых аминокислот (глицин, лейцин, фенилаланин, аспарагиновая кислота) и особенно белковых веществ. Согласно данным С. Мончева, неодинаковая растворимость винного камня в отдельных винах объясняется различием в составе и количественном отношении аминокислот. Поэтому вина, выдержанные на дрожжах, обладают большей стабильностью к помутнениям.
Винная кислота и ее соли являются главным компонентом сусла и вина. Значение их в том, что, обладая кислым вкусом, в сочетании с сахаром они создают определенную вкусовую гармонию.
Винная кислота и ее соли создают кислую реакцию сусла и вина и препятствуют развитию ряда микроорганизмов, портящих вкус и аромат. С другой стороны, кислая среда способствует развитию винных дрожжей, которые обладают более высокой кислотовыносливостью и при pH 2,8—3,8 способны сбраживать сахар.
Ж. Риберо-Гайон и П. Риберо-Гайон исследовали механизм синтеза винной кислоты в листьях и ягодах винограда сорта Каберне Совиньон. Ими было установлено, что при введении глюкозы, меченой в разных положениях С14, меченая винная кислота образовывалась только в ягодах, но когда вводили С14О на свету, то меченая винная кислота образовывалась и в ягодах и в листьях.
К. Иамада, Т. Кодама, Т. Обата и Н. Такахаши [182] изучали механизм образования винной кислоты из глюкозы микробиологическим путем с помощью glucono bacterium Suboxidans. Вначале глюкоза окисляется в глюконовую кислоту, которая затем превращается в 2-кетоглютаровую и 5-кетоглютаровую. Последняя распадается на винную и гликолевую кислоты.
По схеме Ж. Риберо-Гайона и др. из глюкозы образуется кето-5-глюконовая кислота, которая превращается в альдегид вин
ной кислоты, а затем окисляется в винную кислоту. При этом из кето-5-глюконовой кислоты, кроме альдегида винной кислоты, образуется еще гликолевый альдегид.
Впоследствии выяснилось, что 5-кетоглютаровая кислота образует винную и гликолевую кислоты, а 4-кетоглютаровая кислота превращается в претартариковую кислоту, которая распадается на винную и гликолевую, как это показано на схеме:
Как видно из этой схемы, претартариковая кислота имеет эфирную связь и легко гидролизуется с образованием винной кислоты и гликолевого альдегида.
X. Руффнер и Д. Раст [162] показали другой путь образования винной кислоты в листьях и ягодах винограда. Они вводили в листья и ягоды кроме меченой С14-глюкозы еще меченую С14- гликолевую кислоту в отдельности. В случае применения меченой С14-глюкозы была выделена равномерно меченая винная, а при применении меченой С14-гликолевой кислоты была получена винная кислота, меченая с одним атомом углерода. В листьях винограда меченая глюкоза была превращена через глюконат, в претартариковую кислоту [1,2-диоксиэтил-l( + )-винная кислота], которая расщепляется между С-4 и С-5, в результате, как было показано выше, образуются Z-винная и гликолевая кислоты.
В 1965 г. Ж. Риберо-Гайон установил наличие в ягодах винограда эфиров фенольных соединений с винной кислотой: моно- каффеил, моно-р-кумарил и эфир феруил-d-винной кислоты.
В листьях винограда впервые был обнаружен моноэтиловый эфир винной кислоты [174]. Этот эфир очень лабильное соединение и легко превращается в винную и яблочную кислоты.
С. Нагель и др. идентифицировали методом жидкостной хроматографии из винограда сложные эфиры оксикоричной и винной кислот, а также кофейной, кумариновой и конифериловой кислот [138].
Винная кислота играет важную роль в ягодах винограда, а также при технологии вина. Она участвует в дыхании и в обмене веществ виноградной лозы. Винная кислота образует комплексную соль виннокислого железа, которая катализирует окислительно-восстановительные процессы, необходимые для созревания вина. Первым продуктом окисления винной кислоты является диоксифумаровая кислота. Она обладает восстанавливающими свойствами, благодаря чему ускоряется созревание вина.
Диоксифумаровая кислота образуется также в винограде в результате дегидрирования винной кислоты специфической дегидрогеназой винной кислоты в присутствии НАД.
Наши исследования показали, что в винограде содержится оксидаза диоксифумаровой кислоты, которая окисляет ее в дикетоянтарную кислоту. Последняя легко декарбоксилируется в мезоксалевую кислоту.
В дальнейшем мезоксалевая кислота путем окислительного декарбоксилирования превращается в глиоксалевую. Все эти превращения винной кислоты можно представить по следующей схеме:
По представлению И. Вольфа, Т. Беннет-Кларка, К. Тимана и С. Боннера органические кислоты возникают из углеводов, а при созревании, наоборот, образование углеводов происходит за счет реутилизации органических кислот. Однако вследствие низкого уровня восстановленности винной кислоты (0,625) такой прямой переход представляется очень сомнительным.
Винная кислота может превратиться в углеводы при дегидрировании ее в диоксифумаровую. Последняя, декарбоксилируясь, образует гликолевый альдегид. Согласно реакции Фантона, гликолевый альдегид обладает более высоким уровнем восстановленности (1), чем винная кислота.
Известно, что гликолевый альдегид может полимеризироваться в углеводы.