Содержание материала

Для того, чтобы растение проявило высокую устойчивость к зимним невзгодам, в частности к морозам, необходимо, прежде всего, чтобы оно было способно к закаливанию, а это возможно лишь после успешного окончания им процессов активного роста, полного завершения периода летнего развития — вступления почек и камбия в состояние покоя, отложения в тканях больших запасов пластических материалов и освобождения растительных клеток от физиологически активных веществ (ауксинов). Если же в течение летних и раннеосенних месяцев нормальный ход развития растения нарушается и оно не успевает к моменту наступления зимних холодов завершить процессы роста, то такое растение, не достигнув соответствующего физиологического состояния, будет плохо закаляться и может в дальнейшем сильно пострадать или даже погибнуть от сравнительно небольших морозов.
Теоретические основы учения о закаливании растительного организма к низким температурам разрабатывались с давних пор как в СССР, так и в зарубежных странах, но особенно много в этом отношении сделано советскими учеными Н. А. Максимовым и И. И. Тумановым.
Закаливание по отношению к низким температурам — это по Туманову (1940, 1960, 1967) комплекс внутриклеточных процессов, обеспечивающих развитие в растениях способности успешно противостоять воздействию опасных морозов, а также других неблагоприятных факторов зимовки. Закаливание является приспособительной реакцией растений на внешние воздействия, повышающей их зимостойкость. Закаленное состояние физиологически подготовленного для этого растительного организма в целом и отдельных его органов и тканей создается только при наличии соответствующих внешних условий и прежде всего при длительном воздействии на растение пониженной температуры.
С наступлением органического покоя и при прохождении в растительном организме процессов закаливания возникают, по Туманову (1967), условия для застудневания протопласта. Переход содержимого клеток из золя в гель (студень) связан с синтезом особых фракций водорастворимых белков из поступающих в клетки аминокислот, с существенным изменением структуры протопласта. Застудневание улучшает физические свойства протопласта и повышает устойчивость его к действию морозов и механическим деформациям.
Позднеосеннее похолодание вызывает в растительных тканях изменение обмена веществ, меняет направленность действия ферментов, способствует

в частности гидролизу крахмала и накоплению в клетках сахаров, обладающих, как мы знаем, защитными свойствами.
В зимние месяцы ко времени опасного для открыто зимующих кустов винограда падения низких температур содержание крахмала в тканях побегов (в связи с усиленным его распадом) сокращается до минимума, а доля сахаров в общем количестве подвижных углеводов увеличивается соответственно до наибольшей величины.
Гистохимические определения показали, что в первую очередь и в наибольшей степени (обычно нацело) крахмал расщепляется в тканях луба, тогда как в тканях древесины значительная часть крахмала сохраняется.
Максимальная концентрация в побегах сахаров приурочивается к наиболее морозным месяцам и совпадает с наивысшей за весь год морозостойкостью глазков и тканей побегов; при этом редуцирующие сахара накопляются в значительно большем количестве, чем сахароза (Кондо, 19596).
Происходящие в тканях виноградных побегов в течение холодного периода года изменения в количественном соотношении между сахарами и крахмалом носят взаимообусловленный и притом почти адекватный характер, т. е. понижение содержания крахмала связано с повышением в побегах, концентрации сахаров и наоборот. Таким образом, обогащение побегов зимой сахарами происходит в основном за счет расщепления крахмала. Отметим, что существенных различий в качественном составе сахаров в побегах различающихся по степени морозоустойчивости сортов винограда установить не удалось.
Высокое абсолютное и относительное содержание в зимнее время в тканях побегов сахаров является одним из показателей подготовленности виноградного растения к противодействию морозам. Было бы неправильно, однако, как указывает Туманов (1940), слишком преувеличивать роль сахаров, поскольку одного накопления их в клетках еще далеко недостаточно для получения высокой морозостойкости. Протопласт должен еще обладать способностью претерпевать при слабых морозах определенные качественные изменения (застудневание), которые позволяют ему потом выносить воздействия различных неблагоприятных факторов зимовки. Устойчивость растений к осенне-зимним морозам возникает, таким образом, не внезапно, не в результате простого накопления в клетках сахаров и других защитных веществ, а подготовляется всем ходом развития растительных органов и тканей в период вегетации и проявляется в должной мере в последующие месяцы при наличии для этого надлежащей температуры.
Морозостойкость — особое качественное состояние плазмы растительных тканей, которое развивается постепенно в рамках определенной температуры путем глубоких внутриклеточных физиологических превращений, путем перестройки характера обмена веществ в соответствии с закономерными изменениями факторов окружающей среды. "Морозостойкость есть результат взаимодействия растений с внешней средой" (Туманов, 1940).
Развитие в растениях закаленного состояния осуществляется, по Туманову, в две фазы. В тканях многолетних растений во время первой фазы закаливания происходит при пониженных температурах усиленный гидролиз ранее запасенного крахмала и накопление в клетках т. наз. защитных веществ. Основными защитными веществами у растений являются (по Туманову, 1967а) сахара, но "механизм их действия еще не ясен".

Эти защитные вещества могут оказать в полной мере свое полезнее действие в том случае, если протопласт клеток качественно подготовлен к их использованию. Наивысшая предпосылка развития морозостойкости достигается тогда, когда высокие концентрации защитных веществ сочетаются с изменением физического состояния протопласта. Этот процесс протекает под воздействием температур, близких к 0°С.
Во время второй фазы закаливания происходит распределение защитных веществ внутри студня.
Вторая фаза закаливания протекает только при отрицательных температурах. При этом большая часть содержащейся в растениях воды выходит из клеток и замерзает в межклетниках. Внутри клеток растений, прошедших вторую фазу закаливания, остается лишь труднозамерзающая вода. При второй фазе закаливания не только возрастает в клетках содержание незамерзающей воды, но и значительно увеличивается стойкость плазмы. Закаливание защищает от образования льда внутри клеток и повышает устойчивость протопласта при низких температурах к совместному действию обезвоживания и механическому давлению льда. У закаленных растений вся вода, способная замерзнуть при данной температуре, успевает оттечь из протопласта и замерзает в межклетниках (Туманов, 1960, 1967а).
У многих древесных пород вторая фаза закаливания проходит при довольно низких отрицательных температурах порядка 10—15°С. Согласно новым данным в тканях деревьев и кустарников северной зоны закаливание проходит и при сильных морозах.
В лабораторных условиях путем постепенного ступенчатого закаливания удалось повысить морозостойкость березы и смородины настолько, что они были способны выдерживать воздействия морозов ниже 200°С. Это обусловливается глубокими физико-химическими изменениями свойств протопласта клеток, фундаментальной перестройкой его субмикроскопической структуры (Туманов, 1960).
У виноградного растения оптимальная температура для прохождения второй фазы закаливания лежит в пределах от 3 до 5—6° ниже нуля (Кондо, 1960; Погосян, 1960).